Quadratic Word Problems

Date____

1) A fireworks rocket is launched from a hill above a lake. The rocket will fall into the lake after exploding at its maximum height. The rocket's height above the surface of the lake is given by $g(x) = -16x^2 + 64x + 80$. What is the maximum height of the rocket?

A) 150 feet

B) 80 feet

C) 120 feet

D) 144 feet

2) A fireworks rocket is launched from a hill above a lake. The rocket will fall into the lake after exploding at its maximum height. The rocket's height above the surface of the lake is given by $g(x) = -16x^2 + 64x + 80$. How long will it take the rocket to hit the lake?

A) 5 seconds

B) 8 seconds

C) 12 seconds

D) 10 seconds

3) A rock is thrown from the top of a tall building. The distance, in feet, between the rock and the ground x seconds after it is thrown is given by $f(x) = -16x^2 - 4x + 382$ How long after the rock is thrown is it 340 feet from the ground?

A) 2.256 seconds

B) 1.50 seconds

C) 3.324 seconds

D) .236 seconds

- 4) A rock is thrown from the top of a tall building. The distance, in feet, between the rock and the ground x seconds after it is thrown is given by $f(x) = -16x^2 4x + 382$ How long after the rock is thrown does it hit the ground?
 - A) 12.256 seconds
 C) 4.7324 seconds
 D) 7.236 seconds

- 5) In an effort to catch a criminal; a superhero is going to leap over a building and take a short cut down the ally. The function $f(x) = -16x^2 + 150x$ gives the superhero's height in feet as a function of time. The building is 425 feet high. Will the superhero make it over the building?
 - A) Yes, the superhero always makes it!
 - B) No, the superhero can only jump half the height of the building
 - C) No, the superhero will crash into the building at 351 feet
 - D) No, the superhero can only jump 150 feet into the air

- 6) The height in feet of the curved arch support for a bridge can be modeled by $f(x) = -0.0009x^2 + 1.24x + 1.65$. You are standing on a platform 2 feet above the maximum height of the arch. If you bungee from this point, and your bungee will stretch to 420 feet before retracting; are you safe to jump?
 - A) Yes you are totally safe!
 - B) No, you will hit the ground before your bungee retracts
 - C) Who cares! you have insurance!
 - D) I'm not sure, I never thought I would have to use math!

- 7) You are interested in retrieving a souvenir from a shipwreck located 115 feet below the water. You do not have diving equipment, so your dive is limited by the equation $y = 0.05x^2 4x 38$ Assumming you can hold your breath for the duration of the dive; will you be able to retrieve your souvenir?
 - A) No, you can only go 38 feet below the water level
 - B) No, the shipwreck is located 4 feet below your maximum depth
 - C) Yes, you will be able to retrieve the souvenir
 - D) No, you are too afraid of sharks to even attempt the dive!

- 8) You are interested in retrieving a souvenir from a shipwreck located 115 feet below the water. You do not have diving equipment, so your dive is limited by the equation $y = 0.05x^2 4x 38$ Assumming you are able to retrieve your souvenir, how long do you have to hold your breath until you resurface?
 - A) almost 90 seconds
- B) 38 seconds
- C) almost 2 minutes
- D) a minute and 10 seconds

Factor each completely.

9)
$$6a^2 - 23a - 18$$

10)
$$9x^2 - 56x + 12$$

Solve each equation by factoring or completing the square.

11)
$$3x^2 = 26x - 48$$

12)
$$7x^2 = -60x - 32$$

13)
$$3r^2 - 12r = 15$$

14)
$$2n^2 - 12 = 5n$$

For each function, a) determine if it opens up or down, b) find the axis of symmetry, c) find the vertex, d) find the y - intercept, e) graph the function, f) determine if it has a maximum or minimum and what that value is, and g) identify the domain and range.

15)
$$f(x) = -2x^2 + 12x - 15$$

16)
$$f(x) = 2x^2 + 8x + 4$$

