ARITHMETIC SEQUENCES. Find the next few terms in the sequence and then find the requested term.

1) $2,4,6,8$, \qquad _ , \qquad _ , \qquad
Find $\mathrm{a}_{42}=$ \qquad

Determine the RECURSIVE DEFINITION:

Find $\mathrm{a}_{33}=$ \qquad

Determine the RECURSIVE DEFINITION:
Determine the EXPLICIT DEFINITION:

Find $\mathrm{a}_{29}=$ \qquad

Determine the RECURSIVE DEFINITION:
Determine the EXPLICIT DEFINITION:
4) Josh was making a sequence pattern out of triangle pattern blocks.

If Josh continues this pattern, how many triangles will he need to make the $20^{\text {th }}$ step of this pattern?

Functions can be used as explicit definitions for a sequence: Consider the sequence: $4,7,10,13,16,19,22,25, \ldots \ldots \ldots$.

The function $f(x)=4+(x-1) 3$ could be used define the sequence where $x=$ the term number. The domain would be $\{1,2,3,4, \ldots \ldots\}$ and the range would be $\{4,7,10,13, \ldots \ldots$. 5) Create a sequence based on the function: $f(x)=4 x-1$
6) Describe the domain and range of a function that might describe the sequence of $\{14,11,8,5, \ldots .$.
7) Determine the common difference of the sequence and write a function that could be used to describe the sequence: $\{14,11,8,5, \ldots . .$.
8) Write a recurrence relation and an explicit definition for the following table:

\boldsymbol{n}	1	2	3	4	5	\cdots
$\boldsymbol{a}_{\boldsymbol{n}}$	5	7	9	11	13	\ldots

9) Write a recurrence relation and an explicit definition for the following graph:

GEOMETRIC SEQUENCES. Find the next few terms in the sequence and then find the requested term.
10) 3, 6, 12, 24, \qquad , \qquad
\qquad Find $\mathrm{a}_{24}=$ \qquad

Find a16= \qquad
12) Create a sequence based on the function: $f(x)=5 \cdot 2^{x}$
13) Write a recurrence relation and an explicit definition for the following table:

\mathbf{n}	1	2	3	4	5	$\ldots \ldots$.
$\mathbf{a}_{\mathbf{n}}$	2	10	50	250	1250	$\ldots \ldots$.

RECURRENCE RELATION:

EXPLICIT DEFINITION:
14) Write a recurrence relation and an explicit definition for the following graph:

RECURRENCE RELATION:
EXPLICIT DEFINITION:

SEQUENCES

15) Given that a sequence is arithmetic, $a_{1}=5$, and the common difference is 4 , find a_{37}.
16) Given that a sequence is geometric, the first term is 1536 , and the common ratio is $1 / 2$, find the $7^{\text {th }}$ term in the sequence.
17) Given that a sequence is arithmetic, $a_{52}=161$, and the common difference is 3 , find a_{1}.
18) Given that a sequence is geometric , $a_{10}=98415$, and the common ratio is 3 , find a_{1}.
19) The value of an ounce of silver is about $\$ 16$ and over the last several years silver has increased in value by about 7%. How much should an ounce of silver be worth 20 years from now?

20) A person was having a graduation party and noticed that only 5 people were there after the first hour but grew in size by 61% every hour. If the size of the party grew this way for 6 hours, how many people would be at the party on the $6^{\text {th }}$ hour?

21) Jessica is creating a drawing on her paper called a Binary Tree.

If Jessica continue drawing more and more branches, how many new branches would she need to draw on the $12^{\text {th }}$ step?

